4.5 Article

Thermofluid Characterization of Nanofluid Spray Cooling Combining Phase Doppler Interferometry with High-Speed Visualization and Time-Resolved IR Thermography

期刊

ENERGIES
卷 13, 期 22, 页码 -

出版社

MDPI
DOI: 10.3390/en13225864

关键词

nanofluids; spray cooling; heat transfer; thermophysical properties; spray characterization

资金

  1. FundacAo para a Ciencia e Tecnologia (FCT) [030171, LISBOA-01-0145-FEDER-030171/PTDC/EME-SIS/30171/2017, JICAM/0003/2017, UTAP-EXPL/CTE/0064/2017]
  2. UT Austin Programme
  3. Fundação para a Ciência e a Tecnologia [JICAM/0003/2017, UTAP-EXPL/CTE/0064/2017] Funding Source: FCT

向作者/读者索取更多资源

Spray impingement on smooth and heated surfaces is a highly complex thermofluid phenomenon present in several engineering applications. The combination of phase Doppler interferometry, high-speed visualization, and time-resolved infrared thermography allows characterizing the heat transfer and fluid dynamics involved. Particular emphasis is given to the use of nanofluids in sprays due to their potential to enhance the heat transfer mechanisms. The results for low nanoparticle concentrations (up to 1 wt.%) show that the surfactant added to water, required to stabilize the nanofluids and minimize particle clustering, affects the spray's main characteristics. Namely, the surfactant decreases the liquid surface tension leading to a larger wetted area and wettability, promoting heat transfer between the surface and the liquid film. However, since lower surface tension also tends to enhance splash near the edges of the wetted area, the gold nanospheres act to lessen such disturbances due to an increase of the solutions' viscosity, thus increasing the heat flux removed from the spray slightly. The experimental results obtained from this work demonstrate that the maximum heat convection coefficients evaluated for the nanofluids can be 9.8% to 21.9% higher than those obtained with the base fluid and 11.5% to 38.8% higher when compared with those obtained with DI water.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据