4.2 Article

Soil microbiomes mediate degradation of vinyl ester-based polymer composites

期刊

COMMUNICATIONS MATERIALS
卷 1, 期 1, 页码 -

出版社

SPRINGERNATURE
DOI: 10.1038/s43246-020-00102-1

关键词

-

资金

  1. U.S. Office of Naval Research-Young Investigator Program (ONR-YIP) [N00014-19-1-2206]
  2. University of Wisconsin-Office of the Vice Chancellor for Research and Graduate Education
  3. University of Wisconsin-Department of Bacteriology
  4. University of Wisconsin-College of Agriculture and Life Sciences

向作者/读者索取更多资源

Polymer composites are attractive for structural applications in the built environment due to their lightweight and high strength properties but suffer from degradation due to environmental factors. While abiotic factors like temperature, moisture, and ultraviolet light are well studied, little is known about the impacts of naturally occurring microbial communities on their structural integrity. Here we apply complementary time-series multi-omics of biofilms growing on polymer composites and materials characterization to elucidate the processes driving their degradation. We measured a reduction in mechanical properties due to biologically driven molecular chain breakage of esters and reconstructed 121 microbial genomes to describe microbial diversity and pathways associated with polymer composite degradation. The polymer composite microbiome is dominated by four bacterial groups including the Candidate Phyla Radiation that possess pathways for breakdown of acrylate, esters, and bisphenol, abundant in composites. We provide a foundation for understanding interactions of next-generation structural materials with their natural environment that can predict their durability and drive future designs. The effect of microbial communities on the degradation of polymer composites has not been widely studied. Here, a multi-omics and materials characterization approach reveals the time-dependent effect of naturally occurring microbes on the degradation of vinyl ester composites.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据