4.7 Article

Linear Support Tensor Machine With LSK Channels: Pedestrian Detection in Thermal Infrared Images

期刊

IEEE TRANSACTIONS ON IMAGE PROCESSING
卷 26, 期 9, 页码 4229-4242

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TIP.2017.2705426

关键词

Object detection; pedestrian detection; local steering kernel; lsk channels; maximum margin method; support tensor machine

向作者/读者索取更多资源

Pedestrian detection in thermal infrared images poses unique challenges because of the low resolution and noisy nature of the image. Here, we propose a mid-level attribute in the form of the multidimensional template, or tensor, using local steering kernel (LSK) as low-level descriptors for detecting pedestrians in far infrared images. LSK is specifically designed to deal with intrinsic image noise and pixel level uncertainty by capturing local image geometry succinctly instead of collecting local orientation statistics (e.g., histograms in histogram of oriented gradients). In order to learn the LSK tensor, we introduce a new image similarity kernel following the popular maximum margin framework of support vector machines facilitating a relatively short and simple training phase for building a rigid pedestrian detector. Tensor representation has several advantages, and indeed, LSK templates allow exact acceleration of the sluggish but de facto sliding window-based detection methodology with multichannel discrete Fourier transform, facilitating very fast and efficient pedestrian localization. The experimental studies on publicly available thermal infrared images justify our proposals and model assumptions. In addition, the proposed work also involves the release of our in-house annotations of pedestrians in more than 17 000 frames of OSU color thermal database for the purpose of sharing with the research community.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据