3.8 Proceedings Paper

Two-Level Data Compression using Machine Learning in Time Series Database

出版社

IEEE COMPUTER SOC
DOI: 10.1109/ICDE48307.2020.00119

关键词

-

向作者/读者索取更多资源

The explosion of time series advances the development of time series databases. To reduce storage overhead in these systems, data compression is widely adopted. Most existing compression algorithms utilize the overall characteristics of the entire time series to achieve high compression ratio, but ignore local contexts around individual points. In this way, they are effective for certain data patterns, and may suffer inherent pattern changes in real-world time series. It is therefore strongly desired to have a compression method that can always achieve high compression ratio in the existence of pattern diversity. In this paper, we propose a two-level compression model that selects a proper compression scheme for each individual point, so that diverse patterns can be captured at a fine granularity. Based on this model, we design and implement AMMMO framework, where a set of control parameters is defined to distill and categorize data patterns. At the top level, we evaluate each sub -sequence to fill in these parameters, generating a set of compression scheme candidates (i.e., major mode selection). At the bottom level, we choose the best scheme from these candidates for each data point respectively (i.e., sub-mode selection). To effectively handle diverse data patterns, we introduce a reinforcement learning based approach to learn parameter values automatically. Our experimental evaluation shows that our approach improves compression ratio by up to 120% (with an average of 50%), compared to other time-series compression methods.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据