4.7 Article

A Thermal Sampling Depth Correction Method for Land Surface Temperature Estimation From Satellite Passive Microwave Observation Over Barren Land

期刊

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TGRS.2017.2698828

关键词

Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E); land surface temperature; MODIS; passive microwave (MW) remote sensing; soil heat conductionequation (SHCE); thermal sampling depth (TSD)

资金

  1. European Organization for the Exploitation of Meteorological Satellites (EUMETSAT)

向作者/读者索取更多资源

Satellite passive microwave (MW) remote sensing has a better ability to observe land surface temperature (LST) in cloudy conditions than thermal infrared (TIR) remote sensing. Due to the much greater thermal sampling depth (TSD) of MW, currently available MW LST do not represent the thermodynamic temperature of the land surface and, therefore, yield systematic differences from TIR LST. The TSD effect is particularly prominent over barren land and sparsely vegetated surfaces. Here, we present a novel TSD correction (TSDC) method to estimate the MW LST over barren land. The core of this method is a new formulation of the passive MW radiation balance equation, which allows linking MW effective physical temperature to the soil temperature at a specific depth. The TSDC method is applied to the 6.9-GHz channel of AMSR-E in northwestern China-western Mongolia and western Namibia (WN). Evaluation shows that LST estimated by the TSDC method agrees well with the MODIS LST. Validation based on in situ LSTs measured at the Gobabeb site in WN demonstrates the high accuracy of the TSDC method: it yields a root mean squared error of about 2-3 K and slight systematic error. In contrast, other methods without TSDC yield lower accuracies and significantly underestimate LST. Therefore, the TSDC method has the potential to generate MW LST with the same physical meaning and similar accuracy as TIR LST. This study provides implications for developing practical and accurate methods to estimate MW LST over other land surface types and at the global scale.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据