4.7 Article

Learning Sensor-Specific Spatial-Spectral Features of Hyperspectral Images via Convolutional Neural Networks

期刊

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TGRS.2017.2693346

关键词

Classification; convolutional neural network (CNN); feature learning; hyperspectral; spatial-spectral

资金

  1. National Natural Science Foundation of China [61671383, 61301195]
  2. Fundamental Research Funds for the Central Universities [3102016ZB012, 3102016ZB029]

向作者/读者索取更多资源

Convolutional neural network (CNN) is well known for its capability of feature learning and has made revolutionary achievements in many applications, such as scene recognition and target detection. In this paper, its capability of feature learning in hyperspectral images is explored by constructing a five-layer CNN for classification (C-CNN). The proposed C-CNN is constructed by including recent advances in deep learning area, such as batch normalization, dropout, and parametric rectified linear unit (PReLU) activation function. In addition, both spatial context and spectral information are elegantly integrated into the C-CNN such that spatial-spectral features are learned for hyperspectral images. A companion feature-learning CNN (FL-CNN) is constructed by extracting fully connected feature layers in this C-CNN. Both supervised and unsupervised modes are designed for the proposed FL-CNN to learn sensor-specific spatial-spectral features. Extensive experimental results on four benchmark data sets from two well-known hyperspectral sensors, namely airborne visible/infrared imaging spectrometer (AVIRIS) and reflective optics system imaging spectrometer (ROSIS) sensors, demonstrate that our proposed C-CNN outperforms the state-of-the-art CNN-based classification methods, and its corresponding FL-CNN is very effective to extract sensor-specific spatial-spectral features for hyperspectral applications under both supervised and unsupervised modes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据