4.7 Article

Spatial Group Sparsity Regularized Nonnegative Matrix Factorization for Hyperspectral Unmixing

期刊

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TGRS.2017.2724944

关键词

Hyperspectral unmixing (HU); nonnegative matrix factorization (NMF); spatial group sparsity

资金

  1. National Natural Science Foundation of China [41622107, 41371344]
  2. Natural Science Foundation of Hubei Province [2016CFA029]

向作者/读者索取更多资源

In recent years, blind source separation (BSS) has received much attention in the hyperspectral unmixing field due to the fact that it allows the simultaneous estimation of both endmembers and fractional abundances. Although great performances can be obtained by the BSS-based unmixing methods, the decomposition results are still unstable and sensitive to noise. Motivated by the first law of geography, some recent studies have revealed that spatial information can lead to an improvement in the decomposition stability. In this paper, the group-structured prior information of hyperspectral images is incorporated into the nonnegative matrix factorization optimization, where the data are organized into spatial groups. Pixels within a local spatial group are expected to share the same sparse structure in the low-rank matrix (abundance). To fully exploit the group structure, image segmentation is introduced to generate the spatial groups. Instead of a predefined group with a regular shape (e.g., a cross or a square window), the spatial groups are adaptively represented by superpixels. Moreover, the spatial group structure and sparsity of the abundance are integrated as a modified mixed-norm regularization to exploit the shared sparse pattern, and to avoid the loss of spatial details within a spatial group. The experimental results obtained with both simulated and real hyperspectral data confirm the high efficiency and precision of the proposed algorithm.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据