4.7 Article

Detection of Cars in High-Resolution Aerial Images of Complex Urban Environments

期刊

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TGRS.2017.2716984

关键词

Airborne imagery; automatic target recognition; car detection

资金

  1. Engineering and Physical Sciences Research Council Industrial Cooperative Awards in Science and Technology
  2. BAE Systems Military Air and Information, U.K [12220127]

向作者/读者索取更多资源

Detection of small targets, more specifically cars, in aerial images of urban scenes, has various applications in several domains, such as surveillance, military, remote sensing, and others. This is a tremendously challenging problem, mainly because of the significant interclass similarity among objects in urban environments, e.g., cars and certain types of nontarget objects, such as buildings' roofs and windows. These nontarget objects often possess very similar visual appearance to that of cars making it hard to separate the car and the noncar classes. Accordingly, most past works experienced low precision rates at high recall rates. In this paper, a novel framework is introduced that achieves a higher precision rate at a given recall than the state of the art. The proposed framework adopts a sliding-window approach and it consists of four stages, namely, window evaluation, extraction and encoding of features, classification, and postprocessing. This paper introduces a new way to derive descriptors that encode the local distributions of gradients, colors, and texture. Image descriptors characterize the aforementioned cues using adaptive cell distributions, wherein the distribution of cells within a detection window is a function of its dominant orientation, and hence, neither the rotation of the patch under examination nor the computation of descriptors at different orientations is required. The performance of the proposed framework has been evaluated on the challenging Vaihingen and Overhead Imagery Research data sets. Results demonstrate the superiority of the proposed framework to the state of the art.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据