4.6 Article

Temperature and strain controls on ice deformation mechanisms: insights from the microstructures of samples deformed to progressively higher strains at-10,-20 and-30 °C

期刊

CRYOSPHERE
卷 14, 期 11, 页码 3875-3905

出版社

COPERNICUS GESELLSCHAFT MBH
DOI: 10.5194/tc-14-3875-2020

关键词

-

资金

  1. NASA Fund [NNX15AM69G]
  2. Marsden Fund of the Royal Society of New Zealand [UOO1116, UOO052]

向作者/读者索取更多资源

In order to better understand ice deformation mechanisms, we document the microstructural evolution of ice with increasing strain. We include data from experiments at relatively low temperatures (-20 and -30 degrees C), where the microstructural evolution with axial strain has never before been documented. Polycrystalline pure water ice was deformed under a constant displacement rate (strain rate similar to 1.0 x 10(-5) s(-1)) to progressively higher strains (similar to 3 %, 5 %, 8 %, 12 % and 20 %) at temperatures of -10, -20 and -30 degrees C. Microstructural data were generated from cryogenic electron backscattered diffraction (cryo-EBSD) analyses. All deformed samples contain subgrain (low-angle misorientations) structures with misorientation axes that lie dominantly in the basal plane, suggesting the activity of dislocation creep (glide primarily on the basal plane), recovery and subgrain rotation. Grain boundaries are lobate in all experiments, suggesting the operation of strain-induced grain boundary migration (GBM). Deformed ice samples are characterized by interlocking big and small grains and are, on average, finer grained than undeformed samples. Misorientation analyses between nearby grains in 2-D EBSD maps are consistent with some 2-D grains being different limbs of the same irregular grain in the 3-D volume. The proportion of repeated (i.e. interconnected) grains is greater in the higher-temperature experiments suggesting that grains have more irregular shapes, probably because GBM is more widespread at higher temperatures. The number of grains per unit area (accounting for multiple occurrences of the same 3-D grain) is higher in deformed samples than undeformed samples, and it increases with strain, suggesting that nucleation is involved in recrystallization. Core-and-mantle structures (rings of small grains surrounding big grains) occur in -20 and -30 degrees C experiments, suggesting that subgrain rotation recrystallization is active. At temperatures warmer than -20 degrees C, c axes develop a crystallographic preferred orientation (CPO) characterized by a cone (i.e. small circle) around the compression axis. We suggest the c-axis cone forms via the selective growth of grains in easy slip orientations (i.e. similar to 45 degrees to shortening direction) by GBM. The opening angle of the c-axis cone decreases with strain, suggesting strain-induced GBM is balanced by grain rotation. Furthermore, the opening angle of the c-axis cone decreases with temperature. At -30 degrees C, the c-axis CPO changes from a narrow cone to a cluster, parallel to compression, with increasing strain. This closure of the c-axis cone is interpreted as the result of a more active grain rotation together with a less effective GBM. We suggest that lattice rotation, facilitated by intracrystalline dis- location glide on the basal plane, is the dominant mechanism controlling grain rotation. Low-angle neighbour-pair misorientations, relating to subgrain boundaries, are more extensive and extend to higher misorientation angles at lower temperatures and higher strains supporting a relative increase in the importance of dislocation activity. As the temperature decreases, the overall CPO intensity decreases, primarily because the CPO of small grains is weaker. High-angle grain boundaries between small grains have misorientation axes that have distributed crystallographic orientations. This implies that, in contrast to subgrain boundaries, grain boundary misorientation is not controlled by crystallography. Nucleation during recrystallization cannot be explained by sub- grain rotation recrystallization alone. Grain boundary sliding of finer grains or a different nucleation mechanism that generates grains with random orientations could explain the weaker CPO of the fine-grained fraction and the lack of crystallographic control on high-angle grain boundaries.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据