4.7 Article

Role of Polycation and Cross-Linking in Polyelectrolyte Multilayer Membranes

期刊

ACS APPLIED POLYMER MATERIALS
卷 2, 期 11, 页码 5278-5289

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsapm.0c00992

关键词

polyelectrolyte; multilayer; membranes; cross-linking; micropollutants

资金

  1. Aquaporin A/S (Lyngby, Denmark)
  2. TKI HTSM through the University of Twente Impuls program
  3. Vemieuwingsimpuls program - Netherlands Organisation for Scientific Research, NWO [VIDI 723.015.003]

向作者/读者索取更多资源

Alternate deposition of oppositely charged polyelectrolytes is an excellent approach to control the chemistry of interfaces. Membrane technology is one field that benefits from the simplicity and tunability of polyelectrolyte multilayers (PEMs). Herein, ultrafiltration support membranes are coated with PEMs to fabricate nanofiltration membranes. Three PEMs, of different polymeric structures, namely, those of poly(4-styrene sulfonate) (PSS)/poly(allylamine hydrochloric acid) (PAH), PSS/poly(ethyleneimine) (PEI, branched), and PSS/poly(4-aminostyrene) (PAS), are prepared and studied from a fundamental perspective in terms of multilayer composition and cross-linking and also from an applied perspective through PEM membrane performance. The low molecular weight cutoff ( CO) of the PSS/PAH membranes signifies their dense structure (small mesh size), while ion retentions indicate that the dielectric exclusion mechanism is dominant. The PSS/PEI membranes are even denser and have higher selectivities. In contrast, the PSS/PAS membranes are more open, which is likely due to the lower charge density of PAS compared to PEI and PAH. After chemical cross-linking, all of the PEM membranes are denser and therefore more selective and less permeable to water. Micropollutant retention increases for cross-linked PSS/PAH membranes, whereas little to no improvement is seen for cross-linked PSS/PAS and PSS/PEI membranes. Overall, this study shows that completely different membrane properties can be obtained by changing the type of polycation, thus demonstrating the high versatility of PEM-based membranes. In addition, for all PEM membranes, cross-linking acts as an additional tuning parameter that leads to denser and typically more selective layers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据