4.7 Article

Experimental study of stratified swirl flame dynamics in a model gas turbine combustor

期刊

ENERGY
卷 211, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.energy.2020.118699

关键词

Swirl flame; Stratified flame; Flame structure; Combustion instability; Hysteresis

资金

  1. Fundamental Research Funds for the Central Universities, China [3072019CFJ0307]
  2. National Science and Technology Major Project, China [2017-III-0006-0031]

向作者/读者索取更多资源

The flame structure and dynamic response of stratified swirl flames are investigated using a stratified premixed swirl burner. The change of swirl intensity is achieved by swirlers with different swirl angles. Stratification of the flow and mixtures is established by varying the bulk air flow rates and mixture equivalence ratios between the inner and outer annulus. Depending on operating conditions, four different flame structures are stabilized in the combustor: A V-shaped flame (V-flame), a stratified flame (S-flame), a lifted flame (L-flame) and a special plate-shaped flame (P-flame). Thermoacoustic instabilities are then investigated. Generally, the frequency and intensity of the pressure and heat release pulsation are coupled. The amplitude of the pressure and heat release pulsation are all sensitive to the swirl intensity, air split ratio (ASR) and stratification ratio (SR). Large amplitude limit cycles are found in the strong swirl, high ASR and high SR flame. The dominant frequency of pulsation is about 100 Hz in the cases with SR < 1, when SR > 1, the dominant frequency fluctuates between 400 Hz and 500 Hz. The hysteresis phenomenon is also observed in current experiments. Different flame structures can occur in the same operating condition by varying the operating routines. (C) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据