4.4 Article

Response regulator GacA and transcriptional activator RhlR proteins involved in biofilm formation of Pseudomonas aeruginosa are prospective targets for natural lead molecules: Computational modelling, molecular docking and dynamic simulation studies

期刊

INFECTION GENETICS AND EVOLUTION
卷 85, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.meegid.2020.104448

关键词

Pseudomonas aeruginosa; Response regulator (GacA); Transcriptional activator (RhlR); Celastrol; Rotiorinol; Potential natural lead molecules; Biofilm formation; Computational virtual screening

向作者/读者索取更多资源

Pseudomonas aeruginosa has become a global concern due to its extreme resistance to most of the last resort antibiotics. Present study focuses on the screening of potential molecular targets involved in regulation of biofilm formation in P. aeruginosa and identification of potential natural lead molecules against these targets by molecular modelling, docking and simulation studies. Response regulator (GacA) and transcriptional activator (RhlR) involved in biofilm formation in P. aeruginosa were identified as molecular targets by metabolic pathway analysis and the three dimensional structures of these proteins were predicted by homology modelling and validated. By thorough literature survey, 78 lead molecules were screened and their pharmacokinetic profiles were determined and best two of them selected. The binding potential of selected lead molecules against GacA and RhlR were predicted by molecular docking and their binding energy was compared with the interaction of meropenem and its usual target penicillin binding protein-3. The stabilities of best docked complex were studied by molecular dynamic (MD) simulation. This study showed that Celastrol present in Celastrus paniculatus and Rotiorinol present in Chaetomium cupreum showed better binding affinities with GacA (binding energy -7.2 kcal/mol) and RhlR (binding energy -8.0 kcal/mol) respectively in comparison with the binding of Meropenem and its target (binding energy -6.2 kcal/mol). MD simulation studies showed that GacA-Celastrol and RhlR-Rotiorinol complexes demonstrated conformational stability throughout the simulation. This study highlights the application of GacA and RhlR as prospective targets and Celastrol and Rotiorinol are the potential lead molecules towards biofilm producing drug resistant P. aeruginosa.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据