3.8 Proceedings Paper

Evaluation of Cell Viability of Porous Scaffold Fabricated via Freeze-Drying Technique for Vascular Tissue Engineering

出版社

AMER INST PHYSICS
DOI: 10.1063/5.0017437

关键词

-

资金

  1. JICA Cooperation and AUN/SEED-Net Collaborative Research Program [304/PBAHAN/6050351]

向作者/读者索取更多资源

Nowadays, the vascular tissue engineering plays an important role in the treatment of cardiovascular disease in the world. This is due to the versatility of the fabrication techniques available, a wide range of biomaterials selection and custom-made scaffold characteristics. In this work, a cylindrical scaffold was fabricated from a biodegradable copolymer of poly (lactide acid co-caprolactone) (PLCL) via freeze-drying (FD) technique. The aim was to evaluate the cell viability of PLCL cylindrical scaffold fabricated via freeze-drying technique at 6 and 9% PLCL concentration. The water contact angle was employed to determine the hydrophilicity of the fabricated PLCL porous scaffold. Besides, the porous morphology was evaluated using scanning electron microscopy (SEM). Cell viability was characterized through colorhnetric assay using cell counting kit-8 (CCK-8) at different time points of 1, 4 and 7 days. The overall results indicated that at the outer face of the cylinder, the hydrophilicity was higher than the inner face which confirmed by the water contact angle. Whilst, the scaffold at low concentration of PLCL (6 %) exhibited the lower contact angle at outer view than the high PLCL content with the value of 94.35 +/- 12.4 degrees and 103.59 +/- 5.63 degrees respectively. This result corroborated well with the pore sizes observed in the SEM analysis, the mean value of 6% PLCL scaffold (21.33 +/- 5.77 mu m) was higher as compared to 9% PLCL (11.98 +/- 2.35 mu m). It is suggested that the hydrophilicity and bigger pores are favorable for cell adhesion. The cell viability was increased for PLCL scaffold at both concentration as time was prolonged. At 6% PLCL, higher cell viability was obtained which continued that larger pore size has enhanced the cell adhesion and proliferation. In summary, the PLCL cylindrical scaffolds via freeze-drying have a significant potential for vascular tissue engineering application.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据