4.8 Article

Selective oxidation of H1-antihistamines by unactivated peroxymonosulfate (PMS): Influence of inorganic anions and organic compounds

期刊

WATER RESEARCH
卷 186, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2020.116401

关键词

Peroxymonosulfate (PMS); Cetirizine (CET); Diphenhydramine (DPH); Common water constituents; Anions; Humic acid

向作者/读者索取更多资源

The rapid and selective peroxymonosulfate (PMS) induced transformation of H-1-antihistamines cetirizine (CET) and diphenhydramine (DPH) can be influenced by the presence of common organic and inorganic water constituents. Presence of HCO3- and/or CO32-, which often exhibit powerful inhibition on the advanced oxidation processes (AOPs), can enhance the PMS mediated transformation of CET/DPH. The observed promotion is demonstrated by the changed solution pH through detailed kinetic studies. The impact of halide ions is remarkable, with I- inhibiting the process through consumption of PMS, while Cl - increases slightly the transformation kinetics through the formation and subsequent reactions of HOCl. The CET/DPH degradation in the Br-/PMS system is influenced by the generation of reactive species such as HOBr which leads to different reaction pathways as compared to PMS alone. The results demonstrated the performance of PMS can be tailored through varying the experimental parameters. In addition, the presence of model organic constituents found in water, e.g., humic acid, phenol, pyridine or sorbate, has a minimal effect on the PMS mediated oxidation processes, highlighting the strong application potential of PMS in water treatment. (c) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据