4.7 Article

Exact Complexity Certification of Active-Set Methods for Quadratic Programming

期刊

IEEE TRANSACTIONS ON AUTOMATIC CONTROL
卷 62, 期 12, 页码 6094-6109

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TAC.2017.2696742

关键词

Active-set methods; complexity certification; linear model predictive control (MPC); quadratic programming (QP)

向作者/读者索取更多资源

Active-set methods are recognized to often outperform other methods in terms of speed and solution accuracy when solving small-size quadratic programming (QP) problems, making them very attractive in embedded linear model predictive control (MPC) applications. A drawback of active-set methods is the lack of tight bounds on the worst-case number of iterations, a fundamental requirement for their implementation in a real-time system. Extensive simulation campaigns provide an indication of the expected worst-case computation load, but not a complete guarantee. This paper solves such a certification problem by proposing an algorithm to compute the exact bound on the maximum number of iterations and floating point operations required by a state-of-the-art dual active-set QP solver. The algorithm is applicable to a given QP problem whose linear term of the cost function and right-hand side of the constraints depend linearly on a vector of parameters, as in the case of linear MPC. In addition, a new solver is presented that combines explicit and implicit MPC ideas, guaranteeing improvements of the worst-case computation time. The ability of the approach to exactly quantify memory and worst-case computation requirements is tested on a few MPC examples, also highlighting when online optimization should be preferred to explicit MPC.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据