4.4 Article

Josephson-CMOS Hybrid Memory With Nanocryotrons

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TASC.2016.2646929

关键词

Cryogenic memory; nanodevice; single-flux-quantum logic; superconducting integrated circuit

资金

  1. JST ALCA
  2. JSPS KAKENHI [26226019, 16H02796]
  3. Grants-in-Aid for Scientific Research [16H02796, 26220904] Funding Source: KAKEN

向作者/读者索取更多资源

We present hybridization of Josephson, CMOS, and nanocryotron (nTron) devices for a large-scale cryogenic memory application. The memory system proposed here is dynamic random access memory composed of address decoders based on an energy efficient rapid single-flux-quantum logic, nTron line drivers, a CMOS memory cell array, and Josephson current sensors. Because drivers with voltage amplification and decoders are the major causes of power dissipation in the conventional Josephson-CMOS hybrid memory, drastic reduction in power consumption is expected. We show estimates that the power consumption of a 16-Mb memory is reduced to 1.36-2.77mW, approximately 1/12 of the conventional Josephson-CMOS hybrid memory, and the access time is 0.78 ns for a read operation, when we assume a 65-nm CMOS process and a 1.0-mu m Nb/AlOx/Nb process. In the preliminary experiment, we fabricated nTrons using NbTiN thin film that are suitable for hybrid memory implementation, and measured with eight-transistor static random access memory cells fabricated using the Rohm 0.18-mu m CMOS process. We successfully triggered the nTron into the normal state, and observed output voltage of similar to 0.1 V at 13.5 K. The experimental results support the potential of the hybrid memory using NbTiN nTrons.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据