4.7 Article

Controllable Crystallographic Texture in Copper Foils Exhibiting Enhanced Mechanical and Electrical Properties by Pulse Reverse Electrodeposition

期刊

CRYSTAL GROWTH & DESIGN
卷 15, 期 9, 页码 4448-4458

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.cgd.5b00748

关键词

-

向作者/读者索取更多资源

The texture evolution in copper foils prepared by a rapid pulse reverse electrodeposition (PRED) technique using an additive-free electrolyte and the subsequent correlation with the mechanical and electrical properties is investigated in this study. Control over (111), (100), and (101) crystallographic textures in copper foils has been achieved by optimization of the pulse parameters and current density. A hardness as high as 2.0-2.7 GPa, while the electrical conductivity was maintained in the same range as that of bulk copper, was exhibited by these foils. A complete study of controlling the (111), (100), and (101) textures, CSL Sigma 3 coherent twin boundaries, grain refinement, and their effect on the mechanical and electrical properties is performed in detail by characterizing the foils with electron backscatter diffraction, Xray diffraction, nanoindentation, and electrical resistivity measurements. The PRED technique with short and high-energy pulses allowed the (111) texture with increase in forward off-time, while the optimized current density resulted in the formation of (100) and (101) textures. The reverse/anodic pulse applied after every forward pulse aided the minimization of residual stresses with no additives in the electrolyte, the stability of texture in the foils, grain refinement, and formation of growth twins. Among the three highly textured copper foils, those with dominant (111) texture exhibited a lower electrical resistivity of similar to 1.65 x 10(-6) Omega cm and better mechanical strength compared to those with (100) and (101) textures.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据