4.7 Article

Mapping subcomponents of numerical cognition in relation to functional and anatomical landmarks of human parietal cortex

期刊

NEUROIMAGE
卷 221, 期 -, 页码 -

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.neuroimage.2020.117210

关键词

7 Tesla; High resolution fMRI; Number processing; Mathematical cognition; Parietal cortex

资金

  1. French National Research Agency [ANR-14-CE13-0020-01]
  2. European Union's Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant [885672 -DYSC-EYE-7T]
  3. Agence Nationale de la Recherche (ANR) [ANR-14-CE13-0020] Funding Source: Agence Nationale de la Recherche (ANR)

向作者/读者索取更多资源

Human functional imaging has identified the middle part of the intraparietal sulcus (IPS) as an important brain substrate for different types of numerical tasks. This area is often equated with the macaque ventral intraparietal area (VIP) where neuronal selectivity for non-symbolic numerical stimuli (sets of items) is found. However, the low spatial resolution and whole-brain averaging analysis performed in most fMRI studies limit the extent to which an exact correspondence of activations in different numerical tasks with specific sub-regions of the IPS can be established. Here we acquired high-resolution 7T fMRI data in a group of human adults and related the activations in several numerical contrasts (implying different numerical stimuli and tasks) to anatomical and functional landmarks on the cortical surface. Our results reveal a functional heterogeneity within human intraparietal cortex where the retinotopic visual field maps in superior/medial parts of the IPS and superior parietal gyrus respond preferentially to the visual processing of concrete sets of items (over single Arabic numerals), whereas lateral/inferior parts of the IPS are predominantly recruited during numerical operations such as calculation and quantitative comparison. Since calculation and comparison-related activity fell mainly outside the retinotopic visual field maps considered the human functional equivalent of the monkey VIP/LIP complex, the areas most activated during such numerical operations in humans are likely different from VIP.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据