4.6 Article

Information-Theoretic Privacy in Smart Metering Systems Using Cascaded Rechargeable Batteries

期刊

IEEE SIGNAL PROCESSING LETTERS
卷 24, 期 3, 页码 314-318

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/LSP.2017.2656385

关键词

Privacy; rechargeable battery; security; smart metering systems

向作者/读者索取更多资源

A rechargeable battery may alleviate the issue of privacy loss in a smart metering system by distorting a household's load profile. However, existing studies involve a single rechargeable battery, whereas in a network scenario, there could be multiple batteries connected together. In this letter, we study the extension where a user's electricity load is input into a network of two rechargeable batteries, connected in series, and operating individually. This battery network attempts to mask the user load from the utility provider. We focus on the case of independent identically distributed load profile and a system of ideal batteries with no conversion loss, and use normalized mutual information (leakage rate) as the privacy metric. We derive upper and lower bounds on the leakage rate in terms of (single-letter) mutual information expressions. On the achievability side, our information-theoretic upper bound captures the novel tension between minimizing the leakage across each individual battery and the effect of their joint interaction. For the lower bound, we show that a system with a single battery, whose storage capacity is the sum of the two individual batteries, can achieve a leakage rate at least as small as our proposed setup. Furthermore, we use simulations to compare achievable leakage of our proposed scheme with several baseline schemes. The achievable leakage rates obtained in this study could help us to elucidate the privacy performance of a network of batteries.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据