4.7 Article

Computationally Efficient Weighted Binary Decision Codes for Gas Identification With Array of Gas Sensors

期刊

IEEE SENSORS JOURNAL
卷 17, 期 2, 页码 487-497

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/JSEN.2016.2631476

关键词

Gas sensor array; rank-code-based classifiers; pair-wise classification; weighted binary decision code

资金

  1. Qatar National Research Fund (QNRF) under the National Priority Research Program (NPRP) [5-080-2-028]

向作者/读者索取更多资源

Motivated by biological olfactory coding principles, rank-code-based classifiers have recently been proposed to facilitate integration of hardware-friendly gas identification platforms with an array of gas sensors. These classifiers operate on a simple principle of generating rank-codes by ranking the gas sensors' features instead of treating them as a multi-dimensional vector as in computation-intensive state-of-the-art gas classifiers. However, the performance of the rank-code-based classifiers is limited when distinguishing information about all the target gases is not found in the ranks of the gas sensors' features, but in their values. In this paper, we introduce a computationally efficient alternative solution to overcome this limitation. In this solution, an original multi-gas classification problem is decomposed into pairwise classifiers, and the gas is then predicted with the weighted binary decision codes in each of these classifiers, where each element of the code is generated by exploiting features individually. The weighted binary decision codes are formed by first using the nearest centroid approach, which exploits the mean value of each gas sensor's feature to generate binary decision codes, and then, a simple approach is used to assign a weight to each element of the code, depending upon its capability to discriminate the gases in each pairwise classifier. The added advantage of this classification approach is that two computationally efficient metrics are introduced to access the classifiers' applicability to the given data set and certainty about the prediction of any test sample. A classification performance of 97.87% is achieved with this approach on an extensive data set of ten gases experimentally obtained with Figaro series gas sensors, and this is increased to 100% by rejecting 3.37% of samples for which certainty about their predictions is below a 25% confidence level.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据