4.6 Article

Berry curvature, orbital magnetization, and Nernst effect in biased bilayer WSe2

期刊

PHYSICAL REVIEW B
卷 102, 期 23, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.102.235426

关键词

-

资金

  1. European Research Council (ERC) under the European Union's Horizon 2020 Research and Innovation Programme [678763]

向作者/读者索取更多资源

A valley-contrasting Berry curvature in bilayer transition metal dichalcogenides with spin-orbit coupling can generate valley magnetization when the inversion symmetry is broken, for example, by an electric field, regardless of time-reversal symmetry. A nontrivial Berry curvature can also lead to anomalous transport responses, such as the anomalous Hall effect and the anomalous Nernst effect. Applied to a bilayer WSe2, an electric field can tune the Berry curvature and orbital magnetic moment, which has important consequences for the orbital magnetization and the anomalous Nernst responses. The orbital magnetization and its two contributions, one due to the magnetic moment and one due to the Berry curvature, are calculated and interpreted in terms of opposite circulating currents of the bands in the two layers. The valley anomalous Nernst coefficient and spin Nernst coefficient are also calculated. We find that a finite electric field leads to peaks and dips in the Nernst responses that have the signs of the Berry curvatures of the bands and are proportional to their magnitudes; it also enhances the valley Nernst responses. These experimentally verifiable findings may be promising for caloritronic applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据