4.7 Article

Cosmological constraints from BOSS with analytic covariance matrices

期刊

PHYSICAL REVIEW D
卷 102, 期 12, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevD.102.123521

关键词

-

资金

  1. Simons Foundation's Origins of the Universe program

向作者/读者索取更多资源

We use analytic covariance matrices to carry out a full-shape analysis of the galaxy power spectrum multipoles from the Baryon Oscillation Spectroscopic Survey (BOSS). We obtain parameter estimates that agree well with those based on the sample covariance from two thousand galaxy mock catalogs, thus validating the analytic approach and providing substantial reduction in computational cost. We also highlight a number of additional advantages of analytic covariances. First, the analysis does not suffer from sampling noise, which biases the constraints and typically requires inflating parameter error bars. Second, it allows us to study convergence of the cosmological constraints when recomputing the analytic covariances to match the best-fit power spectrum, which can be done at a negligible computational cost, unlike when using mock catalogs. These effects reduce the systematic error budget of cosmological constraints, which suggests that the analytic approach may be an important tool for upcoming high-precision galaxy redshift surveys such as DES1 and Euclid. Finally, we study the impact of various ingredients in the power spectrum covariance matrix and show that the non-Gaussian part, which includes the regular trispectrum and supersample covariance, has a marginal effect (less than or similar to 10%) on the cosmological parameter error bars. We also suggest improvements to analytic covariances that are commonly used in Fisher forecasts.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据