4.6 Article

Assessing model mismatch and model selection in a Bayesian uncertainty quantification analysis of a fluid-dynamics model of pulmonary blood circulation

期刊

出版社

ROYAL SOC
DOI: 10.1098/rsif.2020.0886

关键词

uncertainty quantification; model mismatch; model selection; MCMC; Gaussian processes; pulmonary circulation

资金

  1. Engineering and Physical Sciences Research Council (EPSRC) of the UK [EP/N014642/1]
  2. Royal Society of Edinburgh [62335]
  3. National Science Foundation (NSF) [NSF-DMS 1615820, NSF-DMS 1246991]
  4. American Heart Association (AHA) [19PRE34380459]
  5. EPSRC [EP/S030875/1, EP/N014642/1] Funding Source: UKRI

向作者/读者索取更多资源

This study uses Bayesian inference to quantify the uncertainty of model parameters and haemodynamic predictions in a one-dimensional pulmonary circulation model based on an integration of mouse haemodynamic and micro-computed tomography imaging data. We emphasize an often neglected, though important source of uncertainty: in the mathematical model form due to the discrepancy between the model and the reality, and in the measurements due to the wrong noise model (jointly called 'model mismatch'). We demonstrate that minimizing the mean squared error between the measured and the predicted data (the conventional method) in the presence of model mismatch leads to biased and overly confident parameter estimates and haemodynamic predictions. We show that our proposed method allowing for model mismatch, which we represent with Gaussian processes, corrects the bias. Additionally, we compare a linear and a nonlinear wall model, as well as models with different vessel stiffness relations. We use formal model selection analysis based on the Watanabe Akaike information criterion to select the model that best predicts the pulmonary haemodynamics. Results show that the nonlinear pressure-area relationship with stiffness dependent on the unstressed radius predicts best the data measured in a control mouse.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据