4.6 Article

Superconductivity in infinite-layer nickelates: Role of f orbitals

期刊

PHYSICAL REVIEW B
卷 102, 期 22, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.102.220502

关键词

-

资金

  1. Department of Science and Technology, India
  2. National Science Foundation [NSF PHY-1748958]

向作者/读者索取更多资源

Employing first-principles density functional theory calculations and Wannierization of the low-energy band structure, we analyze the electronic structure of undoped, infinite-layer nickelate compounds NdNiO2, PrNiO2, and LaNiO2. Our study reveals the important role of the nonzero f -ness of Nd and Pr atoms, as opposed to the f(0) occupancy of La. The nonzero f-ness becomes effective in lowering the energy of the rare-earth 5d hybridized axial orbital, thereby enhancing the electron pockets and influencing the Fermi surface topology. The Fermi surface topology of NdNiO2 and PrNiO2 is strikingly similar, while differences are observed for LaNiO2. This difference shows up in computed doping-dependent superconducting properties of the three compounds within a weak coupling theory, which finds two-gap superconductivity for NdNiO2 and PrNiO2, and the possibility of a single-gap superconductivity for LaNiO2 with the strength of superconductivity suppressed by almost a factor of 2, compared to the Nd or Pr compound.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据