4.6 Article

Delivery of Cas13a/crRNA by self-degradable black phosphorus nanosheets to specifically inhibit Mcl-1 for breast cancer therapy

期刊

JOURNAL OF MATERIALS CHEMISTRY B
卷 8, 期 48, 页码 11096-11106

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d0tb01914c

关键词

-

资金

  1. National Natural Science Foundation of China (NSFC) [81630046]

向作者/读者索取更多资源

Mcl-1 amplification has been observed in breast cancer and demonstrated as a key determinant of breast cancer cell survival. However, the clinical use of available effective Mcl-1-specific inhibitors for breast cancer treatment remains a challenge. An RNA-guided CRISPR/Cas13a system targeting RNAs can be used to specifically knock down mRNA expression in mammalian cells. The goal of this work is to develop a self-degradable nanoplatform based on polylysine (PLL)-functionalized black phosphorus (PBP) for the delivery of Cas13a/crRNA complexes to specifically inhibit Mcl-1 at transcriptional level for breast cancer therapy. The constructed Cas13a/crRNA complex is delivered into the cytoplasm by PBP via endocytosis, followed by endosomal escape based on the biodegradation of PBP, and this efficiently knocks down the specific gene at transcriptional level up to an efficiency of 58.64%. Through designing CRISPR RNA crMcl-1, Mcl-1 can be specifically knocked down at transcriptional level in breast cancer cells, resulting in the down-regulation of the expression of Mcl-1 protein and inhibition of the cell activity. Notably, PBP/Cas13a/crMcl-1 shows an excellent tumor suppression efficacy up to 65.16% after intratumoral injection. Therefore, biodegradable PBP is an ideal nanoplatform for the delivery of CRISPR/Cas13a, which could provide a potential strategy for gene therapy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据