4.7 Article

Surface innovation to enhance anti-droplet and hydrophobic behavior of breathable compressed-polyurethane masks

期刊

出版社

ELSEVIER
DOI: 10.1016/j.eti.2020.101093

关键词

COVID-19; Face mask; Polyurethane; Silica sol; Hexadecyltrimethoxysilane; Anti-droplet

资金

  1. National Research Foundation (NRF) of Korea - Ministry of Education, Science and Technology [NRF2018R1D1A1B07043609]

向作者/读者索取更多资源

With the emergence of the coronavirus disease (COVID-19), it is essential that face masks demonstrating significant anti-droplet and hydrophobic characteristics are developed and distributed. In this study, a commercial compressed-polyurethane (C-PU) mask was modified by applying a hydrophobic and anti-droplet coating using a silica sol, which was formed by the hydrolysis of tetraethoxysilane (TEOS) under alkaline conditions and hydrolyzed hexadecyltrimethoxysilane (HDTMS) to achieve hydrophobization. The modified mask (C-PU/Si/HDTMS) demonstrated good water repellency resulting in high water contact angle (132 degrees) and low sliding angle (17 degrees). Unmodified and modified masks were characterized using attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy, scanning electron microscopy (SEM), energy-dispersive Xray spectroscopy (EDS), and X-ray photoelectron spectroscopy (XPS). A drainage test confirmed the strong interaction between the mask surface and coating. Moreover, the coating had negligible effect on the average pore size of the C-PU mask, which retained its high breathability after modification. The application of this coating is a facile approach to impart anti-droplet, hydrophobic, and self-cleaning characteristics to C-PU masks. (C) 2020 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据