4.2 Article

Bell nonlocality using tensor networks and sparse recovery

期刊

PHYSICAL REVIEW RESEARCH
卷 2, 期 2, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevResearch.2.023198

关键词

-

资金

  1. John Templeton Foundation via Grant Q-CAUSAL [61084]
  2. Serrapilheira Institute [Serra-1708-15763]
  3. Brazilian National Council for Scientific and Technological Development (CNPq) via the National Institute for Science and Technology on Quantum Information (INCT-IQ)
  4. MCTIC [307172/2017-1, 406574/2018-9]
  5. MEC

向作者/读者索取更多资源

Bell's theorem, stating that quantum predictions are incompatible with a local hidden variable description, is a cornerstone of quantum theory and at the center of many quantum information processing protocols. Over the years, different perspectives on nonlocality have been put forward as well as different ways to detect nonlocality and quantify it. Unfortunately, and in spite of its relevance, as the complexity of the Bell scenario increases, deciding whether a given observed correlation is nonlocal becomes computationally intractable. Here, we propose to analyze a Bell scenario as a tensor network, a perspective permitting us to test and quantify nonlocality, resorting to very efficient algorithms originating from compressed sensing and that offer a significant speedup in comparison with standard linear programming methods. We use that all nonsignaling correlations can be described by hidden variable models governed by a quasiprobability, a fact we prove with simple linear algebra methods.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据