4.2 Article

Flux-mediated optomechanics with a transmon qubit in the single-photon ultrastrong-coupling regime

期刊

PHYSICAL REVIEW RESEARCH
卷 2, 期 2, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevResearch.2.023335

关键词

-

资金

  1. Netherlands Organisation for Scientific Research (NWO/OCW), as part of the Frontiers of Nanoscience program
  2. European Research Council under the European Unions H2020 program [828826-Quromorphic]

向作者/读者索取更多资源

We propose a scheme for controlling a radio-frequency mechanical resonator at the quantum level using a superconducting qubit. The mechanical part of the circuit consists of a suspended micrometer-long beam that is embedded in the loop of a superconducting quantum interference device (SQUID) and is connected in parallel to a transmon qubit. Using realistic parameters from recent experiments with similar devices, we show that this configuration can enable a tuneable optomechanical interaction in the single-photon ultrastrong-coupling regime, where the radiation-pressure coupling strength is larger than both the transmon decay rate and the mechanical frequency. We investigate the dynamics of the driven system for a range of coupling strengths and find an optimum regime for ground-state cooling, consistent with previous theoretical investigations considering linear cavities. Furthermore, we numerically demonstrate a protocol for generating hybrid discrete- and continuous-variable entanglement as well as mechanical Schrodinger cat states, which can be realized within the current state of the art. Our results demonstrate the possibility of controlling the mechanical motion of massive objects using superconducting qubits at the single-photon level and could enable applications in hybrid quantum technologies as well as fundamental tests of quantum mechanics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据