4.2 Article

Effect of charge self-consistency in DFT+DMFT calculations for complex transition metal oxides

期刊

PHYSICAL REVIEW RESEARCH
卷 2, 期 3, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevResearch.2.033088

关键词

-

资金

  1. ETH Zurich
  2. Swiss National Science Foundation through NCCR-MARVEL

向作者/读者索取更多资源

We investigate the effect of charge self-consistency (CSC) in density-functional theory plus dynamical mean-field theory calculations compared to simpler one-shot calculations for materials where interaction effects lead to a strong redistribution of electronic charges between different orbitals or between different sites. We focus on two systems close to a metal-insulator transition (MIT), for which the importance of CSC is currently not well understood. Specifically, we analyze the strain-related orbital polarization in the correlated metal CaVO3 and the spontaneous electronic charge disproportionation in the rare-earth nickelate LuNiO3. In both cases, we find that the CSC treatment reduces the charge redistribution compared to cheaper one-shot calculations. However, while the MIT in CaVO3 is only slightly shifted due to the reduced orbital polarization, the effect of the site polarization on the MIT in LuNiO3 is more subtle. Furthermore, we highlight the role of the double-counting correction in CSC calculations containing different inequivalent sites.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据