4.2 Article

Photonic non-Hermitian skin effect and non-Bloch bulk-boundary correspondence

期刊

PHYSICAL REVIEW RESEARCH
卷 2, 期 1, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevResearch.2.013280

关键词

-

资金

  1. National Key R&D Program of China (NKRDP) [2018YFA0306200, 2017YFA0303702]
  2. National Natural Science Foundation of China (NSFC) [11625418, 51732006, 11674165]
  3. Fok Ying-Tong Education Foundation of China [161006]
  4. China Postdoctoral Science Foundation [2019M661784]
  5. Fundamental Research Funds for the Central Universities [020414380038]

向作者/读者索取更多资源

In the area of non-Hermitian physics, there has been increasing research interest in photonics. Recently, this interest has expanded to topological systems in which symmetry and topology intertwine with non-Hermiticity, giving rise to many intriguing physical effects. One of the major tasks in exploring topological systems is unveiling the bulk-boundary correspondence in the presence of non-Hermiticity. Several proposals have been put forward in this vein, including non-Bloch bulk-boundary correspondence and the non-Hermitian skin effect. However, its practical realization has remained elusive thus far. In this paper, we demonstrate a feasible design of a one-dimensional non-Hermitian Su-Schrieffer-Heeger model based on photonic coupled resonant optical waveguides (CROWs). We show that non-Hermitian asymmetric coupling can be realized by the judicious design of optical gain and loss elements into unidirectional coupling link rings. The phase transition points of a technically achievable CROW open chain are different from those of the periodic boundary, thus revealing the non-Bloch bulk-boundary correspondence. Moreover, the field distribution is found to be exponentially localized at the ends of an open-boundary chain, which demonstrates the non-Hermitian skin effect. Our results underpin the fundamental importance as well as potential applications in various optical devices such as optical couplers, beam splitters, lasers, optical trapping, etc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据