4.6 Article

One-Trillionth Level Toluene Detection Using a Dual-Designed Semiconductor Gas Sensor: Material and Sensor-Driven Designs

期刊

ACS APPLIED ELECTRONIC MATERIALS
卷 2, 期 12, 页码 4122-4126

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsaelm.0c00902

关键词

Pd-SnO2; semiconductor gas sensor; pulse-driven mode; preheating; oxygen adsorption species; toluene detection limit

资金

  1. JSPS KAKENHI [JP19K15659, JP19H02437]
  2. Yoshida Foundation for the Promotion of Learning and Education

向作者/读者索取更多资源

Lowering the volatile organic compound (VOC) gas detection limit toward the ppt level on a resistive-type semiconductor gas sensor was achieved by combining the material and sensor-driven designs. We fabricated Pd-SnO2 clustered nanoparticles, a material that is highly sensitive to VOC gas, on a microsensor device with a double-pulse-driven mode. This mode was involved in switching the heater-on periods at high-temperature preheating and measurement phases and the rest phase during a heater-off period between preheating and measurement phases. The electrical resistance in synthetic air and the sensor response to toluene increased as preheating temperatures increased because of an increase in the amount of O2- adsorbed on the particle surface. In addition, extending the rest time between the preheating and measurement phases significantly improved the sensor response to toluene. According to the relationship between the sensor response and toluene concentration, we improved the lower detection limit for toluene gas to below 10 ppt, with preheating and measurement temperatures at 400 and 250 degrees C, respectively, and rest time at 100 s. Therefore, the combination of the material and sensor-driven designs may play a key role in improving the sensor performance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据