4.6 Article

Z-Scheme LaCoO3/g-C3N4 for Efficient Full-Spectrum Light-Simulated Solar Photocatalytic Hydrogen Generation

期刊

ACS OMEGA
卷 5, 期 47, 页码 30373-30382

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsomega.0c03318

关键词

-

资金

  1. Beijing Normal University

向作者/读者索取更多资源

Photocatalytic decomposition of water is the most attractive method for the sustainable production of hydrogen, but the development of a highly active and low-cost catalyst remains a major challenge. Here, we report the preparation of LaCoO3/g-C3N4 nanosheets and the utilization of LaCoO3 instead of noble metals to improve the photocatalytic activity for the production of hydrogen. First, LaCoO3 was successfully prepared by the sol-gel method, and then a series of highly efficient Z-scheme LaCoO3/g-C3N4 heterojunction photocatalysts were synthesized by the solvothermal method. Various characterization techniques (X-ray diffraction (XRD), Fourier transform infrared (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive spectroscopy (EDS), X-ray photo-electron spectroscopy (XPS), ultraviolet-visible (UV-vis) diffuse reflectance spectroscopy (DRS), photoluminescence (PL), transient photocurrent response test, electron paramagnetic resonance (EPR)) confirm that the heterostructure and interfacial interaction had been formed between LaCoO3 nanoparticles and g-C3N4 nanosheets. In the photocatalytic water splitting test, LaCoO3/g-C3N4-20 wt % exhibited the highest photocatalytic activity of 1046.15 mu mol h(-1) g(-1), which is 3.5 and 1.4 times higher than those of LaCoO3 and g-C3N4, respectively. This work leads to an inexpensive and efficient LaCoO3/g-C3N4 photocatalysis system for water splitting or other photocatalytic applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据