4.6 Article

Antiwetting and Antifouling Performances of Different Lubricant-Infused Slippery Surfaces

期刊

LANGMUIR
卷 36, 期 45, 页码 13396-13407

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.langmuir.0c00411

关键词

-

资金

  1. Ph.D. studentship (Research Excellence Academy funding scheme) from Newcastle University
  2. EPSRC DTP scholarships
  3. Chinese Scholarship Council
  4. Newcastle University
  5. Engineering and Physical Sciences Research Council [EP/K039083/1, EP/R025606/1]
  6. EPSRC [EP/R512692/1]
  7. EPSRC [EP/K039083/1, EP/R025606/1] Funding Source: UKRI

向作者/读者索取更多资源

The concept of slippery lubricant-infused surfaces has shown promising potential in antifouling for controlling detrimental biofilm growth. In this study, nontoxic silicone oil was either impregnated into porous surface nanostructures, referred to as liquid-infused surfaces (LIS), or diffused into a polydimethylsiloxane (PDMS) matrix, referred to as a swollen PDMS (S-PDMS), making two kinds of slippery surfaces. The slippery lubricant layers have extremely low contact angle hysteresis, and both slippery surfaces showed superior antiwetting performances with droplets bouncing off or rolling transiently after impacting the surfaces. We further demonstrated that water droplets can remove dust from the slippery surfaces, thus showing a cleaning effect. Moreover, coffee-ring effects were inhibited on these slippery surfaces after droplet evaporation, and deposits could be easily removed. The clinically biofilm-forming species P. aeruginosa (as a model system was used to further evaluate the antifouling potential of the slippery surfaces. The dried biofilm stains could still be easily removed from the slippery surfaces. Additionally, both slippery surfaces prevented around 90% of bacterial biofilm growth after 6 days compared to the unmodified control PDMS surfaces. This investigation also extended across another clinical pathogen, S. epidermidis, and showed similar results. The antiwetting and antifouling analysis in this study will facilitate the development of more efficient slippery platforms for controlling biofouling.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据