4.2 Article

Two-Dimensional Nanomaterials for Photoinduced Antibacterial Applications

期刊

ACS APPLIED BIO MATERIALS
卷 3, 期 12, 页码 8188-8210

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsabm.0c00950

关键词

two-dimensional nanomaterials; antibacterial; photoinduced; sterilization mechanisms; application scenarios

资金

  1. National Natural Science Foundation of China [61705239, 82001957]
  2. Science and Technology Service Network Initiative of Chinese Academy of Science [KFJ-STS-ZDTP-080]

向作者/读者索取更多资源

Nanomaterials used as novel antimicrobial agents are developed to combat wide-spectrum bacteria as well as alleviate the problem of bacterial resistance to traditional antibiotics. Two-dimensional (2D) nanomaterials are regarded as promising and widely applicable wide-spectrum antibacterial nanoagents due to their outstanding characteristics, including large surface area, stable structure, good biocompatibility, and cheap raw materials, especially excellent photocatalytic or photothermal properties. The advantages of less resistance, rapid sterilization, local action mode, and non-invasive make 2D nanomaterials with photoinduced property stand out in novel sterilization agents. Here, we systematically summarize various kinds of 2D nanomaterials that were used in photoinduced antibacterial field and introduce the synthesis methods and physicochemical properties related to antibacterial capability. Besides, the sterilization mechanisms of different 2D nanomaterials are also introduced in detail including a direct temperature generation, ROS production or ROS-independent oxidative stress, or various synergistic antibacterial modes. Lastly, we have also discussed the current problems of 2D nanomaterials as light-inducing antibacterial agents and their future application prospects in the fields of biomedicine, sewage treatment, food, and other application scenarios. We envision that this review will assist investigators with quick and in-depth understanding of the latest progress in 2D nanomaterials for photoinduced sterilization, inspiring the development of multiply strategies to design and synthesize novel 2D materials with strong bactericidal capability and high biological safety, and expand 2D materials with photoinduced sterilization to more application scenarios.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据