4.7 Article

Automated Generation of Lakes and Reservoirs Water Elevation Changes From Satellite Radar Altimetry

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/JSTARS.2017.2684081

关键词

Lakes; outlier detection; reservoirs; satellite altimetry; water level

资金

  1. NASA [NNX13AQ89G, NNX16AN35G]
  2. NASA [NNX13AQ89G, 464646] Funding Source: Federal RePORTER

向作者/读者索取更多资源

Limited access to in-situ water level data for lakes and reservoirs have been a major setback for regional and global studies of reservoirs, surface water storage changes, and monitoring the hydrologic cycle. Processing satellite radar altimetry data over inland water bodies on a large scale has been a cumbersome task primarily due to the removal of contaminated measurements as a result of surrounding land. In this study, we proposed a new algorithm to automatically generate time series from raw satellite radar altimetry data without user intervention. With this method, users with a little knowledge on the field can now independently process radar altimetry for diverse applications. The method is based on K-means clustering, interquartile range, and statistical analysis of the dataset for outlier detection. Jason-2 and Envisat radar altimetry data were used to demonstrate the capability of this algorithm. A total of 37 satellite crossings over 30 lakes and reservoirs located in the U.S., Brazil, and Nigeria were used based on the availability of in-situ data. We compared the results against in-situ data and root-mean-square error values ranged from 0.09 to 1.20 m. We also confirmed the potential of this algorithm over rivers and wetlands using the southern Congo River and Everglades wetlands in Florida, respectively. Finally, the different retracking algorithms in Envisat; Ice-1, Ice-2, Ocean, and Sea-Ice were compared using the proposed algorithm. Ice-1 performed best for generating water level time series for in-land water bodies and the result is consistent with previous studies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据