4.2 Article

Exploring helical phases of matter in bosonic ladders

期刊

PHYSICAL REVIEW RESEARCH
卷 2, 期 4, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevResearch.2.043433

关键词

-

资金

  1. Max Planck Graduate Center
  2. Deutsche Forschungsgesellschaft (DFG) [OSCAR 277810020 (RI 2345/2-1)]
  3. Villum Foundation [25310]
  4. China Scholarships Council [201906040093]
  5. Deutsche Forschungsgemeinschaft (DFG) within the CRC network TR 183 [277101999]

向作者/读者索取更多资源

Ladder models of ultracold atoms offer a versatile platform for the experimental and theoretical study of different phenomena and phases of matter linked to the interplay between artificial gauge fields and interactions. Strongly correlated helical states are known to appear for specific ratios of the particle and magnetic flux densities, and they can often be interpreted as a one-dimensional limit of fractional quantum Hall states, thus being called pretopological. Their signatures, however, are typically hard to observe due to the small gaps characterizing these states. Here we investigate bosonic ladder models at filling factor nu = 1. Based on bosonization, renormalization group, and matrix product state simulations we pinpoint two strongly correlated helical phases appearing at this resonance. We show that one of them can be accessed in systems with two-species hardcore bosons and on-site repulsions only, thus amenable for optical lattice experiments. Its signatures are sizable and stable over a broad range of parameters for realistic system sizes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据