4.2 Article

Multiple spin-orbit excitons and the electronic structure of α-RuCl3

期刊

PHYSICAL REVIEW RESEARCH
卷 2, 期 4, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevResearch.2.042007

关键词

-

资金

  1. Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) [277146847 -CRC 1238]

向作者/读者索取更多资源

The honeycomb compound alpha-RuCl3 is widely discussed as a proximate Kitaev spin-liquid material. This scenario builds on spin-orbit entangled j = 1/2 moments arising for a t(2g)(5) electron configuration with strong spin-orbit coupling lambda and a large cubic crystal field. The actual low-energy electronic structure of alpha-RuCl3, however, is still puzzling. In particular, infrared absorption features at 0.30, 0.53, and 0.75 eV seem to be at odds with a j = 1/2 scenario. Also the energy of the spin-orbit exciton, the excitation from j = 1/2 to 3/2, and thus the value of lambda, are controversial. Combining infrared and Raman data, we show that the infrared features can be attributed to single, double, and triple spin-orbit excitons. We find lambda = 0.16 eV and Delta = 42(4) meV for the observed noncubic crystal-field splitting, supporting the validity of the j = 1/2 picture for alpha-RuCl3. The unusual strength of the double excitation is related to the underlying hopping interactions, which form the basis for dominant Kitaev exchange.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据