4.2 Article

Revisiting Sampson's theory for hydrodynamic transport in ultrathin nanopores

期刊

PHYSICAL REVIEW RESEARCH
卷 2, 期 4, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevResearch.2.043153

关键词

-

资金

  1. Center for Enhanced Nanofluidic Transport (CENT), an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Basic Energy Sciences [DE-SC0019112]
  2. National Science Foundation (NSF) [OCI1053575]
  3. NSF [OCI-0725070, ACI-1238993]
  4. state of Illinois

向作者/读者索取更多资源

Sampson's theory for hydrodynamic resistance across a zero-length orifice was developed over a century ago. Although a powerful theory for entrance/exit resistance in nanopores, it lacks accuracy for relatively small-radius pores since it does not account for the molecular interface chemistry. Here, Sampson's theory is revisited for the finite slippage and interfacial viscosity variation near the pore wall. The corrected Sampson's theory can accurately predict the hydrodynamic resistance from molecular dynamics simulations of ultrathin nanopores.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据