4.6 Article

An Electro-chemo-thermo-mechanical Coupled Three-dimensional Computational Framework for Lithium-ion Batteries

期刊

出版社

ELECTROCHEMICAL SOC INC
DOI: 10.1149/1945-7111/abd1f2

关键词

mechanical deformation; electro-chemo-thermo-mechanical model; porosity change; Dualfoil model; lithium-ion battery; full-cell simulation

资金

  1. Robert Bosch LLC through Bosch Energy Research Network (BERN) [01.01.MS.17]
  2. National Science Foundation [CMMI-1911836]

向作者/读者索取更多资源

Thermal and mechanical effects play a vital role in determining the electrochemical behavior of lithium-ion batteries (LIBs). Non-uniform temperature distribution and mechanical deformation can result in uneven electrochemical states, leading to spatially varying aging rates that significantly shorten cell lifetime. In order to improve simulation accuracy and thus the quality of computational battery design optimization, it is therefore essential to capture these coupled phenomena in a simulation model of a full battery cell. In this work, an electro-chemo-thermo-mechanical coupled framework is proposed to simulate LIBs in the three-dimensional space. In this new framework, a recently proposed one-dimensional electrochemical model, which includes the impact of mechanical deformation and local lithiation state on the effective transport properties of the charged species, is coupled with a three-dimensional thermomechanical model. A unique coupling scheme is proposed to handle information exchange between these two models. This framework allows us to accurately and efficiently study the behavior of three-dimensional cells with realistic geometry and resolve the spatial variation of interested fields. Two commercial cells are studied to show the performance of the newly proposed battery simulation framework.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据