4.7 Article

Immobilizing a π-Conjugated Catecholato Framework on Surfaces of SiO2 Insulator Films via a One-Atom Anchor of a Platinum Metal Center to Modulate Organic Transistor Performance

期刊

INORGANIC CHEMISTRY
卷 59, 期 24, 页码 17945-17957

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.inorgchem.0c02163

关键词

-

资金

  1. Nippon Sheet Glass Foundation for Materials Science and Engineering
  2. JSPS KAKENHI [18K04890, JP16H06514]
  3. Nanotechnology Platform Program (Synthesis of Molecules and Materials) of the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan
  4. Grants-in-Aid for Scientific Research [18K04890] Funding Source: KAKEN

向作者/读者索取更多资源

Chemical modification of insulating material surfaces is an important methodology to improve the performance of organic field-effect transistors (OFETs). However, few redox-active self-assembled monolayers (SAMs) have been constructed on gate insulator film surfaces, in contrast to the numerous SAMs formed on many types of conducting electrodes. In this study, we report a new approach to introduce a pi-conjugated organic fragment in close proximity to an insulating material surface via a transition metal center acting as a one-atom anchor. On the basis of the reported coordination chemistry of a catecholato complex of Pt(II) in solution, we demonstrate that ligand exchange can occur on an insulating material surface, affording SAMs on the SiO2 surface derived from a newly synthesized Pt(II) complex containing a benzothienobenzothiophene (BTBT) framework in the catecholato ligand. The resultant SAMs were characterized in detail by water contact angle measurements, X-ray photoelectron spectroscopy, atomic force microscopy, and cyclic voltammetry. The SAMs served as good scaffolds of 7c-conjugated pillars for forming thin films of a well-known organic semiconductor C8-BTBT (2,7- dioctyl[1]benzothieno[3,2-b][1]benzothiophene), accompanied by the engagements of the C8-BTBT molecules with the SAMs containing the common BTBT framework at the first layer on SiO2. OFETs containing the SAMs displayed improved performance in terms of hole mobility and onset voltage, presumably because of the unique interfacial structure between the organic semiconducting and inorganic insulating layers. These findings provide important insight into creating new elaborate interfaces through installing coordination chemistry in solution to solid surfaces, as well as OFET design by considering the compatibility between SAMs and organic semiconductors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据