4.8 Article

Highly Enhanced Gas Sensing Performance Using a 1T/2H Heterophase MoS2 Field-Effect Transistor at Room Temperature

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 12, 期 45, 页码 50610-50618

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.0c15162

关键词

monolayer MoS2; 1T/2H heterophase; NO2 detection; field-effect transistor; room temperature sensing

资金

  1. Fundamental Research Funds for the Central Universities, China [22120180524]

向作者/读者索取更多资源

Monolayer MoS2 (ML-MoS2) with various polymorphic phases attracts growing interests for device applications in recent years. Herein, a field-effect transistor (FET) gas sensor is developed on the basis of monolayer MoS2 with a heterophase of a 1T metallic phase and a 2H semiconducting phase. Lithium-exfoliated MoS2 nanosheets own a monolayer structure with rich active sites for gas adsorption. With thermal annealing from 50 to 300 degrees C, the initial lithium-exfoliated 1T-phase MoS2 gradually transforms into the 2H phase, during which the 1T and 2H heterophases can be modulated. The 1T/2H heterophase MoS2 shows p-type semiconducting properties and prominent adsorption capability for NO2 molecules. The highest response is observed for 100 degrees C annealed MoS2 of a 40% 1T phase and a 60% 2H phase, which shows a sensitivity up to 25% toward 2 ppm NO2 at room temperature in a very short time (10 s) and a lower limit of detection down to 25 ppb. This study demonstrates that the gas detection capability of ML-MoS2 could be boosted with the heterophase construction, which brings new insights into transition-metal dichalcogenide gas sensors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据