4.6 Article

Electrochemical Sodiation/Desodiation into Mn3O4 Nanoparticles

期刊

ACS OMEGA
卷 5, 期 45, 页码 29158-29167

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsomega.0c03888

关键词

-

资金

  1. Universiti Malaysia Terengganu under Talent and Publication Enhancement-Research Grant (TAPE-RG) [vot 55158]

向作者/读者索取更多资源

Mn3O4 is considered to be a promising anode material for sodium-ion batteries (SIBs) because of its low cost, high capacity, and enhanced safety. However, the inferior cyclic stability of the Mn3O4 anode is a major challenge for the development of SIBs. In this study, a one-step solvothermal method was established to produce nanostructured Mn3O4 with an average particle size of 21 nm and a crystal size of 11 nm. The Mn3O4 obtained exhibits a unique architecture, consisting of small clusters composed of numerous tiny nanoparticles. The Mn3O4 material could deliver high capacity (522 mAh g(-1) at 100 mA g(-1)), reasonable cyclic stability (158 mAh g(-1) after 200 cycles), and good rate capability (73 mAh g(-1) at 1000 mA g(-1)) even without further carbon coating, which is a common exercise for most anode materials so far. The sodium insertion/extraction was also confirmed by a reversible conversion reaction by adopting an ex situ X-ray diffraction technique. This simple, cost-effective, and environmentally friendly synthesis technique with good electrochemical performance shows that the Mn3O4 nanoparticle anode has the potential for SIB development.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据