4.8 Article

Vortex Fluidic-Mediated Fabrication of Fast Gelated Silica Hydrogels with Embedded Laccase Nanoflowers for Real-Time Biosensing under Flow

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 12, 期 46, 页码 51999-52007

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.0c15669

关键词

nanoflowers; enzyme; laccase; biosensor; microfluidics

资金

  1. Australia Research Council [DP 200101106]
  2. Government of South Australia
  3. Australian Nanotechnology Network, through the Overseas Travel Fellowship program

向作者/读者索取更多资源

The fabrication of hybrid protein-Cu-3(PO4)(2) nanoflowers (NFs) via an intermediate toroidal structure is dramatically accelerated under shear using a vortex fluidic device (VFD), which possesses a rapidly rotating angled tube. As-prepared laccase NFs (LNFs) exhibit approximate to 1.8-fold increase in catalytic activity compared to free laccase under diffusion control, which is further enhanced by approximate to 2.9-fold for the catalysis under shear in the VFD. A new LNF immobilization platform, LNF@silica incorporated in a VFD tube, was subsequently developed by mixing the LNFs for 15 min with silica hydrogel resulting in gelation along the VFD tube surface. The resulting LNFs@silica coating is highly stable and reusable, which allows a dramatic 16-fold enhancement in catalytic rates relative to LNF@silica inside glass vials. Ultraviolet-visible spectroscopy-based real-time monitoring within the LNFs@silica-coated tube reveals good stability of the flow processing. The results demonstrate the utility of the VFD microfluidic platform, further highlighting its ability to control chemical and enzymatic processes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据