4.8 Article

Band Alignment of ScxAl1-xN/GaN Heterojunctions

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 12, 期 46, 页码 52192-52200

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.0c15912

关键词

epitaxial films; band alignments; ultrawide-band-gap materials; ferroelectrics; piezoelectrics

资金

  1. Office of Naval Research
  2. National Academies through NRC Research Associateship awards

向作者/读者索取更多资源

ScAIN is an emergent ultrawide-band-gap material with both a high piezoresponse and demonstrated ferroelectric polarization switching. Recent demonstration of epitaxial growth of ScAlN on GaN has unlocked prospects for new high-power transistors and nonvolatile memory technologies fabricated from these materials. An understanding of the band alignments between ScAlN and GaN is crucial in order to control the electronic and optical properties of engineered devices. To date, there have been no experimental studies of the band offsets between ScAlN and GaN. This work presents optical characterization of the band gap of molecular beam epitaxy grown ScxAl1-xN using spectroscopic ellipsometry and measurements of the band offsets of ScxAl1-xN with GaN using X-ray photoemission spectroscopy, along with a comparison to first-principles calculations. The band gap is shown to continuously decrease as a function of increasing ScN alloy fraction with a negative bowing parameter. Furthermore, a crossover from straddling (type-I) to staggered (type-H) band offsets is demonstrated as Sc composition increases beyond approximately x = 0.11. These results show that the ScAlN/GaN valence band alignment can be tuned by changing the Sc alloy fraction, which can help guide the design of heterostructures in future ScAlN/GaN-based devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据