4.2 Article

Forward and inverse design of kirigami via supervised autoencoder

期刊

PHYSICAL REVIEW RESEARCH
卷 2, 期 4, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevResearch.2.042006

关键词

-

资金

  1. National Science Foundation [DMR1608501]
  2. Harvard Materials Science and Engineering Center [DMR-2011754]
  3. Hariri Graduate Fellowship

向作者/读者索取更多资源

Machine learning (ML) methods have recently been used as forward solvers to predict the mechanical properties of composite materials. Here, we use a supervised autoencoder (SAE) to perform the inverse design of graphene kirigami, where predicting the ultimate stress or strain under tensile loading is known to be difficult due to nonlinear effects arising from the out-of-plane buckling. Unlike the standard autoencoder, our SAE is able not only to reconstruct cut configurations but also to predict the mechanical properties of graphene kirigami and classify the kirigami with either parallel or orthogonal cuts. By interpolating in the latent space of kirigami structures, the SAE is able to generate designs that mix parallel and orthogonal cuts, despite being trained independently on parallel or orthogonal cuts. Our method allows us to both identify alternate designs and predict, with reasonable accuracy, their mechanical properties, which is crucial for expanding the search space for materials design.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据