4.7 Article

Knowledge Transfer Through Machine Learning in Aircraft Design

期刊

IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE
卷 12, 期 4, 页码 48-60

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/MCI.2017.2742781

关键词

-

资金

  1. National Research Foundation (NRF) Singapore under the Corp Lab@University Scheme

向作者/读者索取更多资源

The modern aircraft has evolved to become an important part of our society. Its design is multidisciplinary in nature and is characterized by complex analyses of mutually interdependent disciplines and large search spaces. Machine learning has, historically, played a significant role in aircraft design, primarily by approximating expensive physics-based numerical simulations. In this work, we summarize the current role of machine learning in this application domain, and highlight the opportunity of incorporating recent advances in the field to further its impact. Specifically, regression models (or surrogate models) that represent a major portion of the current efforts are generally built from scratch assuming a zero prior knowledge state, only relying on data from the ongoing target problem of interest. However, due to the incremental nature of design processes, there likely exists relevant knowledge from various related sources that can potentially be leveraged. As such, we present three relatively advanced machine learning technologies that facilitate automatic knowledge transfer in order to improve design performance. Subsequently, we demonstrate the efficacy of one of these technologies, i.e. transfer learning, on two use cases of aircraft engine design yielding noteworthy results. Our aim is to unveil this new application as a well-suited arena for the salient features of knowledge transfer in machine learning to come to the fore, thereby encouraging future research efforts.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据