4.7 Article

Exogenous GABA promotes adaptation and growth by altering the carbon and nitrogen metabolic flux in poplar seedlings under low nitrogen conditions

期刊

TREE PHYSIOLOGY
卷 40, 期 12, 页码 1744-1761

出版社

OXFORD UNIV PRESS
DOI: 10.1093/treephys/tpaa101

关键词

carbon metabolism; gamma-aminobutyric acid; nitrogen deficiency; nitrogen metabolism; Populus

类别

资金

  1. National Key R&D Program of China [2016YFD-0600105]
  2. National Natural Science Foundation of China [31971627]

向作者/读者索取更多资源

Nitrogen (N) deficiency adversely affects tree growth. Additionally, gamma-aminobutyric acid (GABA) is closely associated with growth and stress responses because of its effects on carbon (C) and N metabolism. However, little is known about its roles related to plant adaptations to N-deficient conditions. In this study, we analyzed the effects of GABA (0, 2 and 10 mM) applications on the growth traits and physiological responses of poplar (Populus alba x P. glandulosa '84K') seedlings under high N (HN) and low N (LN) conditions. We found that the added GABA interacted with N to affect more than half of the studied parameters, with greater effects in LN plants than in HN plants. Under LN conditions, the GABA application tended to increase poplar growth, accompanied by increased xylem fiber cell length and xylem width. In stems, exogenous GABA increased the abundance of non-structural carbohydrates (starch and sugars) and tricarboxylic acid cycle intermediates (succinate, malate and citrate), but had the opposite effect on the structural C contents (hemicellulose and lignin). Meanwhile, exogenous GABA increased the total soluble protein contents in leaves and stems, accompanied by significant increases in nitrate reductase, nitrite reductase and glutamine synthetase activities in leaves, but significant decreases in those (except for the increased glutamate synthetase activity) in stems. A multiple factorial analysis indicated that the nitrate assimilation pathway substantially influences poplar survival and growth in the presence of GABA under LN conditions. Interestingly, GABA applications also considerably attenuated the LN-induced increase in the activities of leaf antioxidant enzymes, including peroxidase and catalase, implying that GABA may regulate the relative allocation of C and N for growth activities by decreasing the energy cost associated with stress defense. Our results suggest that GABA enhances poplar growth and adaptation by regulating the C and N metabolic flux under N-deficient conditions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据