4.5 Article

Characteristics of the numerous and widespread recurring slope lineae (RSL) in Valles Marineris, Mars

期刊

ICARUS
卷 285, 期 -, 页码 195-210

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.icarus.2016.10.025

关键词

Mars, surface; Geological processes; Mars, climate

资金

  1. NASA Mars Data Analysis Grant [NNH13ZDA001N]

向作者/读者索取更多资源

Recurring slope lineae (RSL) are narrow (0.5-5 m) dark features on Mars that incrementally lengthen down steep slopes, fade in colder seasons, and recur annually. These traits suggest that liquid water is flowing in the shallow subsurface of Mars today. Here we describe High Resolution Imaging Science Experiment (HiRISE) observations of RSL within Valles Marineris (VM). We have identified 239 candidate and confirmed RSL sites within all the major canyons of VM, with the exception of Echus Chasma. About half of all the globally known RSL locations occur within VM and the areal density of RSL on Coprates Montes appears to be the greatest on the planet. VM RSL are heterogeneously distributed, as they are primarily clustered in certain areas while being conspicuously absent in other locations that appear otherwise favorable. RSL have been found on many of the interior layered deposits (ILDs) within VM. Such ILD RSL appear to traverse bedrock, instead of regolith like all other RSL. Forty-six of the VM RSL sites show incremental lengthening and exhibit similar behavior in most of the canyons of VM, but the RSL duration at one site in Juventae Chasma is significantly reduced. Furthermore, the lengthening seasonality depends solely on slope orientation, with typical VM RSL on a given slope lengthening for similar to 42-74% of a Mars year. There are always RSL lengthening within VM, regardless of the season. If RSL are caused by water, such a long active season at hundreds of VM RSL sites suggests that an appreciable source of water must be recharging these RSL. Thermophysical modeling indicates that a melting temperature range of similar to 246-264K is needed to reproduce the seasonal phenomenology of the VM RSL, suggesting the involvement of a brine consisting of tens of wt% salt. The mechanism(s) by which RSL are recharged annually remain uncertain. Overall, gaining a better understanding of how RSL form and recur can benefit the search for extant life on Mars and could provide details about an in situ water resource. (C) 2016 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据