4.7 Article

Arterial Pressure, Heart Rate, and Cerebral Hemodynamics Across the Adult Life Span

期刊

HYPERTENSION
卷 69, 期 4, 页码 712-720

出版社

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/HYPERTENSIONAHA.116.08986

关键词

aging; blood pressure; cerebrovascular circulation; heart rate; hemodynamics

资金

  1. National Institutes of Health (NIH) [R01AG033106, R01HL102457]
  2. China Scholarship Council Fund
  3. AHA's Postdoctoral Fellowship [14POST20140013]
  4. NIH grant [K99HL133449]

向作者/读者索取更多资源

Age-related alterations in systemic and cerebral hemodynamics are not well understood. The purpose of this study is to characterize age-related alterations in beat-to-beat oscillations in arterial blood pressure (BP), heart rate (HR), cerebral blood flow (CBF), cardiac baroreflex sensitivity, and dynamic cerebral autoregulation across the adult life span. We studied 136 healthy adults aged 21 to 80 years (60% women). Beat-to-beat BP, HR, and CBF velocity were measured at rest and during sit-stand maneuvers to mimic effects of postural changes on BP and CBF. Transfer function analysis was used to assess baroreflex sensitivity and dynamic cerebral autoregulation. Carotid-femoral pulse wave velocity was measured to assess central arterial stiffness. Advanced aging was associated with elevated carotid-femoral pulse wave velocity, systolic and pulse BP, cerebrovascular resistance, and CBF pulsatility, but reduced mean CBF velocity. Compared with the young and middle-aged, older adults had lower beat-to-beat BP, HR, and CBF variability in the low-frequency ranges at rest, but higher BP and CBF variability during sit-stand maneuvers. Baroreflex sensitivity was reduced, whereas dynamic cerebral autoregulation gain was elevated at rest in older adults. Multiple linear regression analysis indicated that systolic BP variability is correlated positively with carotid-femoral pulse wave velocity independent of HR variability. In conclusion, advanced aging is associated with elevated pulsatility in BP and CBF; reduced beat-to-beat low-frequency oscillations in BP, HR, and CBF; and impaired baroreflex sensitivity and dynamic cerebral autoregulation at rest. The augmented BP and CBF variability in older adults during sit-stand maneuvers indicate diminished cardiovascular regulatory capability and increased hemodynamic stress on the cerebral circulation with aging.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据