4.5 Review

Herbicide bioremediation: from strains to bacterial communities

期刊

HELIYON
卷 6, 期 12, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.heliyon.2020.e05767

关键词

Environmental microbiology; Analytical chemistry; DNA analyses; Metabolic pathways; Cell communication

资金

  1. Coordination for the Improvement of Higher-Level Personnel (CAPES)
  2. National Council of Technological and Scientific Development (CNPq)
  3. Foundation for Research Support of the State of Paran a (Fundacao Araucaria)

向作者/读者索取更多资源

There is high demand for herbicides based on the necessity to increase crop production to satisfy world-wide demands. Nevertheless, there are negative impacts of herbicide use, manifesting as selection for resistant weeds, production of toxic metabolites from partial degradation of herbicides, changes in soil microbial communities and biogeochemical cycles, alterations in plant nutrition and soil fertility, and persistent environmental contamination. Some herbicides damage non-target microorganisms via directed interference with host metabolism and via oxidative stress mechanisms. For these reasons, it is necessary to identify sustainable, efficient methods to mitigate these environmental liabilities. Before the degradation process can be initiated by microbial enzymes and metabolic pathways, microorganisms need to tolerate the oxidative stresses caused by the herbicides themselves. This can be achieved via a complex system of enzymatic and non-enzymatic antioxidative stress systems. Many of these response systems are not herbicide specific, but rather triggered by a variety of substances. Collectively, these nonspecific response systems enhance the survival and fitness potential of microorganisms. Biodegradation studies and remediation approaches have relied on individually selected strains to effectively remediate herbicides in the environment. Nevertheless, it has been shown that microbial communication systems that modulate social relationships and metabolic pathways inside biofilm structures among microorganisms are complex; therefore, use of isolated strains for xenobiotic degradation needs to be enhanced using a community based approach with biodegradation pathway integration. Bioremediation efforts can use omics-based technologies to gain a deeper understanding of the molecular complexes of bacterial communities to achieve to more efficient elimination of xenobiotics. With this knowledge, the possibility of altering microbial communities is increased to improve the potential for bioremediation without causing other environmental impacts not anticipated by simpler approaches. The understanding of microbial community dynamics in free-living microbiota and those present in complex communities and in biofilms is paramount to achieving these objectives. It is also essential that non-developed countries, which are major food producers and consumers of pesticides, have access to these techniques to achieve sustainable production, without causing impacts through unknown side effects.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据